كلية العلوم الحياتية College of Life Sciences

<u>بالمحمة</u> بالمحمة الكويت

Department of Information Science

Course Contract (Course outline and Syllabus)

Year

Course Code	Course Title	Credit Hours
CLS108	Applied Calculus	3-0-3
Course Days	Course Timing	Lecture Room Location

Course Instructor	Office	Office Tel. Ext.
Email	Office Hours	

Teaching Assistant	Office	Office Tel. Ext.
Email	Office Hours	Laboratory Location

Course Catalog Description
This course reviews areas of basic mathematics such as trigonometry, analytical geometry in two
dimensions, linear equations, functions and their graphs, derivatives and its geometric interpretation, simple
integration and its application. (Problems will be focused on the following areas: Food nutrition,
information technology, environmental sciences, etc.).
Prerequisites: ELU 106
Textbook
Applied Calculus, S. Waner & S.R. Costenoble, Thomson Brooks-Cole, 7th Edition
References
Calculus and its Applications Goldstein/Schneider/ Lav/Asmar. Prentice Hall

Course Assessment Plan								
Assessment	We	Date*						
Midterm I								
Midterm II								
Final Exam								
Home works								
Quizzes								
Project	Report:	Presentation:	Report Submission: Pr		Pre	Presentation:		

* All dates are tentative and may be subject to change.

To	Topics Covered in this Course					
#	Unit #	Торіс	No. of teaching hours			
1	1	Functions and linear models. Function terminology,	5			
		linear functions and linear models.				
2	2	Nonlinear models. Quadratic, exponential,	7			
		logarithmic, trigonometric functions				
3	3	Introduction to the derivative.	6			
		Limits, average rate of change; numerical, algebraic				
		viewpoint of the derivative; derivative of elementary				
		functions, sums, differences and constant multiples.				
4	4	Techniques of differentiation.	6			
		The product and quotient rules, the chain rule, the				
		derivative of logarithmic, exponential, trigonometric				
		functions; implicit differentiation.				
5	5	Applications of the derivative .	6			
		Local maximum and minimum, inflection points,				
		graph sketching, optimization problems.				
6	6	The integral.	6			
		The definite integrals, substitution, the definite				
		integrals as sums, as areas; the fundamental theorem				
		of calculus.				
7	7	Further integration techniques and applications of	3			
		integrals.				
		Area between curves, the average value of a function.				
8	8	Functions of several variables.	3			
		Functions of several variables, and the partial				
		derivatives.				

Course Learning Outcomes						
CLO #	CLO statement	CLO mapped to course unit	CLO Level	Student Outcomes		
C1	Use elementary functions in modeling real-life situations	Unit 1,2	L	(1)		
C2	Comprehend the role of derivative as instantaneous rate of change and its meaning in dynamics of processes	Unit 3,4,5	L	(1)		
C3	Conduct the principal techniques of differentiation and apply them in investigation of functions behavior	Unit 3,4,5	L	(1)		
C4	Apply basic techniques of integration to solve standard type of problems	Unit 6,7	L	(1)		
C5	Deploy differentiation techniques in more complex problems involving functions of several variables	Unit 8	L	(1)		

Descriptio	n of Student Outcomes (High)
SO #	Student Outcome statement
	None

University (Fradin	g Polic	y									
Range	95 ~ 100	90 ~ 94	87 ~ 89	83 ~ 86	80 ~ 82	77 ~ 79	73 ~ 76	70 ~ 72	65 ~ 69	60 ~ 64	Less than 60	Fail for Absence
Weight	4.00	3.67	3.33	3.00	2.67	2.33	2.00	1.67	1.33	1.00	0.00	0.00
Letter Grade	А	A-	B+	В	B-	C+	С	C-	D+	D	F	FA

General Policies

Group Work and Cheating Policy: Group work is encouraged for solving assignments. However, copying and claiming someone else's work is not accepted at all. It will be reported and penalized according to the university cheating rules.

Homework Policy: All assignments must be submitted in class and on Black Board on the due date. Late assignments will not be accepted.

Attendance Policy: You should attend the section you are registered in. Attending a section which you are not registered in is NOT PERMITED for any reason. Students are encouraged to come to class early. Plan to arrive to class 5 minutes before class starts. To avoid class disturbance, please do not negotiate entrance while the class is going on.

Absence Rules: According to university rules:

•The first warning is issued after 3 hours of absence.

• The second (final warning) is issued after 6 hours of absence.

• An "FA" (Fail for Absence) grade is issued after 7 hours of absence.

Note: Field marked with **RED** color means it should be same as CDF.

Course Weekly Breakdown

Dates*	Topics	Comments
Week 1		
Week 2		
Week 3		
Week 4		
Week 5		
Week 6		
Week 7		
Week 8		
Week 9		
Week 10		
Week 11		

Week 14	
FINAL EXAM	

* All dates are tentative and may be subject to change.